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1- Determination of the rigidity coefficient of a wire statically

Apparatus:

Any of the standard forms of apparatus for horizontal or vertical torsion of a wire. A pointer is fixed to
the wire at a distance L from a circular card marked in degrees.. this card is clamped in position in such a way
that the wire passes freely through a central hole in the card. The torsion is applied by a weight attached to a
pulley wheel supported by the wire.

.
O

AN
bl

Method:

Fix the pointer at a point at a given distance L from the fixed end of the wire. Attach a weight to the end
of the pulley and read the angle of the twist and then attach the weight to the other side pf the pulley and read
the twisting angle. Increase the weight and repeat the same procedure for several weights with same length L.

Then repeat same procedure for a certain weight and varying the distance L to have another set of data.
Plot the angle against the weight and find the slope to be used to calculate the rigidity modulus.

Plot the angle against L and determine the slope to calculate the modulus and then compare the results.

Theory

Consider a wire of length L; on twisting the free end of the wire through an angle O, the rectangular
finite sheet of the wire is subjected to a shear stress

Let ¢ be the angle of shear



shearstress

¢

Now n ( rigidity coefficient )=

. nro
Where shearing stress=n¢ = _

Shearing force = nLljr.areaof theelement. = ana.rdr.de

3
Nar arde

And the moment of this force about the fixed point =

By integrating the equation to determine the total moment and simplify the relation the modulus of rigidity n
with be in the form of:

360gDL m
n=——> 1
T a o

360gDL 1
n= 2.4 g
n’a* slope

Where D is the diameter of the pulley and a is the radius of the wire and g=9.81 ms™

And the m/a is the 1/slope of the graph.

Experimental data
D=5.5cm
a=0.32cm

n=35x10° N/m?



2- A: Determination of Young’s modulus by bending of a beam

Load (W,)

Aparatus

The figure above shows a beam of length L loaded at the free end. Let us choose x-axis along its
length and y-axis

Method

The beam is placed on the support which is an edge of the table after loading the free end of the
beam the beam is bended downward and by increasing the amount of mass that loading the beam the
bending increasing accordingly.

Make a table as shown below and take the readings for different Masses
Where Xo is the level of the beam without load

Load X | S=Xo-X
(M)

Then plot a graph of S on Y-axis and the load M on x-axis and calculate the slope of that graph

L

Siem) ——e

'.-1."[-;:—-
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For a rectangular cross-section as the ruler beam and from the slope of the graph S/M
The Young’s modulus can be evaluated as:

_L9,
4bd® " slope

dyne/cm?

The quantities L, b, d and | are measured in this experiment. Hence, the maximum probable error can be
calculated as:

AY 3AL _Ad Ab Ax
= +3—+—+—
Y L d b x

B: Determination of Young’s Modulus by from the period of vibration of a loaded cantilever

The loaded beam is clamped firmly to the edge of the bench by the G clamp with a definite length projecting
from it. The load affixed to the beam should be such as to cause but a small depression . the beam is now
caused to vibrate , and the periodic time T is obtained by timing 20 vibrations . the experiment is repeated to
find a mean values of L. A graph of T? against L? is plotted to obtain a mean a mean value of L*/T?. the width
and depth of the bean are measured . this measurement should be taken carefully from an average of at least
six screw-gauge readings at different points along the beam.

Hence the motion is simple harmonic and the periodic time T is

mL3
21E

T=2x

11



2 3
From which E = Az m2L
3IT

3

For a beam of rectangular section | = E
* OB
From graph — =—
S Y
B 16 7°m @
bd® AB
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3-Viscosity of Glycerin

Introduction:

Viscosity is a measure of the internal friction in a liquid or the resistance to flow
Low viscosity fluids flow easily like (water, alcohol)

High viscosity fluids pour slowly like molasses and cold honey

The common unit of absolute viscosity is the poise, which is defined as the force in dynes required to move a
surface one square centimeter in area past a parallel surface at a speed of one centimeter per second, with
surfaces separated by a fluid film one centimeter thick, for convenience the centi-poise — one hundredth of
poise — is the unit customarily used. Absolute viscosity : the ration of shear stress to shear rate, it is a fluid
internal resistance to flow. Absolute viscosity divided by the fluids density equals to kinematic viscosity.

It is typically measured by a rotary viscometers to determine the torque on rotating spindle and to measure the
fluid’s resistance.

Rotary viscometer principle: the viscosity of fluids is to be determined with rotary viscometer, in which a
hanging load drives a cylinder immersed in the liquid (Glycerol) to be investigated, the viscosity of liquid
generates a moment of rotation of the cylinder which can be measured with the aid of the torsion.

Theory and evaluation:

When a thin film of liquid is held between two plates, moving the plates relatively to each other requires the
application of force. The liquid layers that are directly adjacent to each of the plates surfaces are held to them
by force of adhesion, and forces of cohesion act between the molecules of the liquid, on movement, a linear
velocity gradient is forced within the liquid between two plates.

When the distance between the two plates is dx and the difference in velocity is dv, according to Newton’s law
, a force F is required to move the liquid layers.

dv
F=mA—0..... 1
n dx .

\Y
This force is proportional to the area A and the velocity gradientd—, the factor 1M given above is the dynamic
X

viscosity . The gradient F/A gives the shearing stress T

dv

T=T]& .............. (2)

The dynamic viscosity is therefore, equal to the ratio of the shearing stress and the velocity gradient.

13



The gauge in this experiment is a rotary viscometer; it consists of an inner and outer cylinder. The liquid to be
investigated is located between them. At low rotational velocity, the moment of the rotation T(t), which

exerted on cylindrical layer of liquid with a radius r and a height of h conforms to the following relationship as a
result of the rotation of the outer or inner cylinder

T(t)=r.2nrhr ... (3)

The shearing stress can be expressed by the measurable moment of rotation:

T
MN=——...... 4
w(r) 2ntrh “

In this case the velocity gradient D is as follows:

Where ® is angular velocity.

Combining the equations 2, 4 and 5 and integration with limiting condition @ =0 for r=R1 an w=f for r=R2 (R1
, R2 =radii of the two cylinder) gives the following relationship between the measured moment or rotation and
the angular velocity.

47R% R h
T=| —1—2— |Inf=Cnf
Rg _ Rf n n
T slope
Or == e (6)
Cf C

Where C is the device constant.
The above equation must be further corrected due to edge effect so that C becomes an empirical constant.

Liquids whose viscosity is independent of shearing stress and the velocity gradient are called Newtonian liquids.
These include liquids of low molecular weight, dilute suspensions of spherical particle and pure, thinly liquid
lubricating oils.

With colloidal solutions, suspensions of higher concentrations, crystalline liquids and melts the viscosity is no
longer a constant at a given temperature. Such non-Newtonian liquids show a complex correlation between T,
and the integral velocity gradient D. A colloidal solution is one which contains dissolved particles of size
between 107> and 107 cm. the viscosity of colloidal solution is dependent not only concentration but also on
the molecular shape.

14



Viscosity is a temperature dependant property. Liquids exhibit a decrease in viscosity with the increase of
temperature. When energy is supplied, the average energy of the molecules increases and the mutual forces of
attraction between the molecules less noticeable. For most liquids, the following equation is valid:

C material constant
E energy required to overcome intermolecular forces.

An increase in temperature of 1K causes the viscosity to be reduced by about 2%.
N
Note: n=-—s="Pas
m

The common metric unit of the absolute viscosity is the poise where, 10 poise = 1 N.s/m?
For convenience, the centi-poise cp is the unit customarily used, where, cp=0.01 poise .
Set up and procedure

1- Hang a small mass in the cord and leave it to fall freely while you count the time of its falling from top to
the bottom.
2- Repeat the 1* step by gradually increasing the mass and fill the following table

M(g) t( sec) T (dyne.cm) F (Hz)

3- Calculate the moment of rotation (T ) and the frequency (f) using the following relations:
T=m.g.r

Where r is the radius of the rotating disk.

4- Draw T ( on the y-axis) as a function of f then determine the slope .
5- Use the calculated slope and equation (6) to evaluate the viscosity for the Glycerin.
Experimental data :R1=2.45cm , R2=3.15cm

r=1.7cm, h=7.5cm, N= 1500x10~2 Pa.s

15



4-Determination of the atmospheric pressure using a Boyle’s law apparatus

Apparatus

Conventional Boyle’s law apparatus

Method:

The experiment is commenced with the open tube well raised and the closed tube containing the gas
(air) as low as possible. Then, by gradually lowering the open tube and raising the close tube until the position
of the two tubes are interchanged, a series of readings for pressures and volumes can be obtained extending
over a wide range. At each stage the position of A (the top of the closed tube) and the mercury surfaces at B
and C are read against the scale, a small time interval being allowed between each set of readings to ensure
that the gas in the close tube is at the temperature of its surroundings. The volume (V) of the gas may be taken
as proportional to the length AB of the tube (assumed uniform), while the difference (h) between the readings
at B and C gives the excess pressure of the gas above the atmospheric pressure (H). (if the level of the mercury
at Cis bellow that at B, h will be negative)

Results

Level A | LevelB | LevelC | h(C-B) V (A-B) 1/v
cm of mercury | Scale unit

Theory

Boyle’s law states that for a given mass of gas maintained at constant temperature, the volume (V) is
inversely proportional to the pressure (P), or PV=constant. A plot of 1/V against P wills the yield a straight-line
graph passing through the common zero. Now if H is the atmospheric pressure in cm of the mercury, and h the
difference in the mercury levels in the two tubes, then P=H 1/

The plot of 1/V against h when extrapolated to cut the h-axis will locate the
common zero, and the intercept OA (disregard the negative sign) is evidently the

atmospheric pressure H.

16



5- Surface tension for water

Using Drop volume method — stalagmometric method

The stalagmometric method is one of the most common methods used for the surface tension determination. For
this purpose the several drops of the liquid leaked out of the glass capillary of the stalagmometer are weighed. If
the weight of each drop of the liquid is known, we can also count the number of drops which leaked out to
determine the surface tension. The drops are formed slowly at the tip of the glass capillary placed in a vertical
direction. The pendant drop at the tip starts to detach when its weight (volume) reaches the magnitude balancing
the surface tension of the liquid. The weight (volume) is dependent on the characteristics of the liquid.

The stalagmometric method
The drop starts to fall down when its weight g is equal to the circumference (2rmrr) multiplied by the
surface tension y.

In the case of a liquid which wets the stalagmometer's tip the r value is that of the outer radius of the

capillary and if the liquid does not wet — the r value is that of the inner radius of the capillary (Fig. 1).

The stalagmometric method

The drop starts to fall down when its weight g is equal to the circumference (2mrr) multiplied by the

surface tension y.

W=2xry (1)

In the case of a liquid which wets the stalagmometer's tip the r value is that of the outer radius of the

capillary and if the liquid does not wet — the r value is that of the inner radius of the capillary (Fig. 1).

17



Fig. 1 The drops wetting area corresponding to the outer and inner radii
of the stalagmometr's tip.
In fact, the weight of the falling drop W' is lower than W expressed in Eq.(1). This is a result of drop
formation, as shown in Fig.2.
I G ._J L
NI O

4

L

(]
s A 1 ]

Fig. 2. Subsequent steps of the detaching drop
Up to 40% of the drop volume may be left on the stalagmometer tip. Therefore a correction
f has to be introduced to the original Tate's equation.

W'= 2 ry f )

Where: f expresses the ratio of W7 W.
Harkins and Brown found that the factor f is a function of the stalagmometer tip radius, volume of the
drop v, and a constant, which is characteristic of a given stalagmometer, f =f (r, a, v)

[ T

f=t|=|=t] e

®3)

The f values for different tip radii were determined experimentally using water and
benzene, whose surface tensions were determined by the capillary rise method.
They are shown in Table 1.

Tabeli 1. Values of the factor

i3 F i3 F v F

] [ R o7 OLE093 145 0. 6207
0.3 0.T256 o.7Ts O.E032 1.20 0.6535
0.25 o044 (R: ] OLECD0 1.25 0. 6520
0. 40 0.eE23 o.e5 05002 1.30 0. 0D
0.45 0.6669 0.5 0.5998 1.35 06230
0.50 DLES15 0.05 OLE034 1.40 0. 603D
0.55 0.E262 1.0 0.E098 1.45 0. 5830
0.6 0LE2ED 1.05 oLEATO 1.50 0.567T0
0LES DLEATA 1.40 LE2B80 1.55 0.5540

IIRTEY.
It appeared that the factor f changes the least if: 0.6 (/v (1.2

In practice, after having determined the mean weight m of the liquid drop calculated from

several drops weighed, one can calculate its volume at the measurement temperature if

18



the liquid density is known, and then the value of r/v1l/3. Next the f value can be found in

the table. Finally, the surface tension can be calculated from Eqg. (2) where W'=m g.

mg 4)

Uy

The value of f depends also on the kind of liquid tested.
In our experiments we use the following value to calculate the surface tension for water

where 2nf = 3.8
y=mg/3.8r (5)

Therefore the relative measurements (in comparison to another liquid of known surface
tension) can not be applied here, that is, ycan not be calculated from the ratio of the
weights of two drops of two liquids and known surface tension of one of them. However,
such measurement can be done with 0.1 % accuracy if the shape of the stalagmometer
tip is like that shown in figure 3.

2/3 1/3
m, | [d|

|'
==L =L
lm, | 1d,] )

Then: ﬁ
¥

Fig. 3. The drops wetting area corresponding to the outer and inner radii of the
stalagmometr's tip.
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6- determination of Poisson’s ratio and the elastic constants of a wire
by Searle’s method.

Apparatus : Searle’s apparatus consisting of two indentical brass rods connected
together at their midpoints by wire under test; the diameter of the wire shoud be small
compared with its length, stop watch , silk fiber or cotton thread, lighter.

Method: First suspend the rods by parallel sik fibers as shown so that the rods and the
wire are in the same horizontal plane. Draw together slightly th end B and D of th rods
by a loop of cotton. Burn the cotton and take the time of torsional oscillations, and ths
find the periodic time T1. Now clamp th rod AB | a firm support, and allow the lower rod
CD to execute torsinal oscillations around the axis of the wire. Obtain the periodic time
T2 by timing 20 of these osciatins. Measure the length (I) of the wire and its radius
(a)from at least six readings of the diameter taen y a screw gauge at differet points
along the wire. Weigh the rod, and also measure its length (L) and radius (r)

Mass of rod (M)= ------ kg
Length of rod (L) =------- m
Radius of rod (r) =------ m
Screw-gauge reading: , , , , , , ; meandiameter -------- m
Radius of wire (a)=----------- m
Length of wire (I) =------------ m
Then K=-------- kgm?
Time for 20 oscilations: 1% reading=------s
2" reading=------s
3" reading=------- S

Periodic time for 1% experiment T1=(t1+t2+t3)/(3*20)
Periodic time for 2" experiment T2=(t1+t2+t3)/(3*20)

The required values to be calcultated E---------- N7 (P  ES—— Nm™, k=---------
Nm™
Consider the state of affairs when each rod is displace at angle @ from its equilibrium

position. The wire is bent into a circular arc of radius of curvature 2% and the bent wire

exerts a restoring torque on each rod equal to the moment of flexural stresses produced in
the wire by the motion of the rod.
For a slightly bent wire this moment ;
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IE
R
na'E
20

. V(104 . .
Since /= for a rod of circular cross-section.

The equation of motion of the rod is thus:

no'E
K@ = 27 .6 (where K =moment of inersia of the rod).
The motion is thus harmonic and the periodic time is
Tl=2xn ZGE
o' E
87K/
E=—— 1
T1%a* 1)
2 2
Where K=M L+r—
12 4
With one rod clamped in a horizontal position, the periodic time is
T2=2x ZKf
ma'n
From which n= % (2)
o

Now from the theory of elasticity

1+ u= ZE (where x = Poisson'sratio)
n

o112
' ﬂ_Z(Tfj . 3

Having E and n from the above equations ,the bulk modulus k can be calculated from
the relation

11,1 @

E 9k 3n

The advantages of this method are that only a small specimen of the material is
required and also the measurement involved (times of oscillation) can be found
accurately.

The experiment provides a method of obtaining Poisson’s ratio by direct observations,
although the method is only applicable to materials obtainable in the form of wires.
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7- Determination of Young’s modulus of a wire

Apparatus : Two long wires of the same material are suspended side by side from the
same support. The extension of the wire under test AB is taken by a vernier scale V
against th main scale S supported by the wire CD, which is kept under constant load by
a heavy weight L' . This arrangement obviates any errors due to temperature changes
during the experiment, or yielding of the support, from affecting the observed
extensions. The heavy weight L and the original load on AB should both be sufficient to
keep the wires taut and free from kinks. The extending load on AB is increased by the

addition of slotted half-kilograms weight at W. A meter rule an a screw gauge will also

be required.
E C A
L
H D v
S JV
7

W

w

1 Jsd
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Method

When the wire AB is taut the vernier is read to give the zero position. The load is progressively increased by
adding of 0.5 kg weights at W and the vernier is read on each occasion. When about 0.5 kg have been
added, the weights are removed in successive stages, and vernier readings are again taken. The length of AB
from the support to the point of attachment to the vernier scale is measured y a meter rule. The diameter is
also measured (from cross-sectional are) by screw gauge at least six readings being taken.

NOTE: if loaded within the limits of perfect elasticity the graph of extension against load will be straight line,
thus verifying Hooke’s law. On unloading the wire will recover its original length. Further loading beyond
the elastic limit will result in much larger relative extensions, and after removing the weights , the wire will
be found to have acquired a permanent set.

elongatory stress
elongatory strain
Wg, oL _Wgl
a L ar’sL

Young's modulus =

L=----mmmmmme- m
Screw gauge readings: , , , , , mean value = ———————--- m
Zero error = +[- ------- m
True man diameter =------------ m
Radius r = -=--m-mmmm- m
Loa in kg Extention in mm
Load increasing | Load decreasing | mean
From graph
wg 0OBx9.81
sL  ABx10°
L OB
L E=—x=——x9.81x10° = ————————— Nm
zr° AB
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8- Determination of the velocity of sound in air

Apparatus: glass resonance tube about 100cm long and 3cm in diameter. This is held by a clamp and
connected with a rubber tube almost filled with water. Also a set of tuning forks of frequency range 256
-512 and meter rule.

Method

The resonance tube is placed vertically and the water level can move up and down by raising the rubber
tube to increase or decrease the part of glass tube that contain air above the water.

Frequency | ReadingofL | 1/f
()

From the graph of L against (1/f), the slope can be obtained

Where the slope equals to quarter of the speed of sound , due to the fact that the resonance takes place
when L equals to 0.25 of the wavelength, therefore, the speed of sound will be the slope times 4

When a tube of opened ends the resonation will take place when the length of the tube is 05 of the wave
length of sound.
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The correction value obtained from the negative intersection in the graph with is related to the distance
between the tuning fork and the glass tube. Also the diameter of the glass tube is one of the parameters
that effect the value of the correction value.

The theoretical value of the speed of sound can be calculated using the formula:

0

TC
273

1
c=331(1+ 2 mls

Hence the temperature of the room should be measured to obtain the theoretical value of sound speed
in air
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